Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 62.984
Filtrar
1.
Cells ; 13(7)2024 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-38607066

RESUMO

The strategy for treating bladder cancer (BC) depends on whether there is muscle invasion or not, with the latter mostly treated with intravesical therapy, such as with bacillus Calmette-Guérin (BCG). However, BCG treatment is unsuccessful in 70% of patients, who are then subjected to radical cystectomy. Although immune-checkpoint inhibitors have been approved as a second-line therapy for a subset of BC patients, these have failed to meet primary endpoints in clinical trials. Thus, it is crucial to find a new treatment. The mitochondrial gatekeeper protein, the voltage-dependent anion channel 1 (VDAC1), mediates metabolic crosstalk between the mitochondria and cytosol and is involved in apoptosis. It is overexpressed in many cancer types, as shown here for BC, pointing to its significance in high-energy-demanding cancer cells. The BC cell lines UM-UC3 and HTB-5 express high VDAC1 levels compared to other cancer cell lines. VDAC1 silencing in these cells using siRNA that recognizes both human and mouse VDAC1 (si-m/hVDAC1-B) reduces cell viability, mitochondria membrane potential, and cellular ATP levels. Here, we used two BC mouse models: subcutaneous UM-UC3 cells and chemically induced BC using the carcinogen N-Butyl-N-(4-hydroxybutyl) nitrosamine (BBN). Subcutaneous UM-UC3-derived tumors treated with si-m/hVDAC1 showed inhibited tumor growth and reprogrammed metabolism, as reflected in the reduced expression of metabolism-related proteins, including Glut1, hexokinase, citrate synthase, complex-IV, and ATP synthase, suggesting reduced metabolic activity. Furthermore, si-m/hVDAC1-B reduced the expression levels of cancer-stem-cell-related proteins (cytokeratin-14, ALDH1a), modifying the tumor microenvironment, including decreased angiogenesis, extracellular matrix, tumor-associated macrophages, and inhibited epithelial-mesenchymal transition. The BBN-induced BC mouse model showed a clear carcinoma, with damaged bladder morphology and muscle-invasive tumors. Treatment with si-m/hVDAC1-B encapsulated in PLGA-PEI nanoparticles that were administered intravesically directly to the bladder showed a decreased tumor area and less bladder morphology destruction and muscle invasion. Overall, the obtained results point to the potential of si-m/hVDAC1-B as a possible therapeutic tool for treating bladder cancer.


Assuntos
Neoplasias da Bexiga Urinária , Canal de Ânion 1 Dependente de Voltagem , Humanos , Animais , Camundongos , Canal de Ânion 1 Dependente de Voltagem/metabolismo , Vacina BCG , Mitocôndrias/metabolismo , Neoplasias da Bexiga Urinária/patologia , Trifosfato de Adenosina/metabolismo , Microambiente Tumoral
2.
Sci Rep ; 14(1): 7739, 2024 04 02.
Artigo em Inglês | MEDLINE | ID: mdl-38565869

RESUMO

Mutations in PINK1 and Parkin cause early-onset Parkinson's Disease (PD). PINK1 is a kinase which functions as a mitochondrial damage sensor and initiates mitochondrial quality control by accumulating on the damaged organelle. There, it phosphorylates ubiquitin, which in turn recruits and activates Parkin, an E3 ubiquitin ligase. Ubiquitylation of mitochondrial proteins leads to the autophagic degradation of the damaged organelle. Pharmacological modulation of PINK1 constitutes an appealing avenue to study its physiological function and develop therapeutics. In this study, we used a thermal shift assay with insect PINK1 to identify small molecules that inhibit ATP hydrolysis and ubiquitin phosphorylation. PRT062607, an SYK inhibitor, is the most potent inhibitor in our screen and inhibits both insect and human PINK1, with an IC50 in the 0.5-3 µM range in HeLa cells and dopaminergic neurons. The crystal structures of insect PINK1 bound to PRT062607 or CYC116 reveal how the compounds interact with the ATP-binding pocket. PRT062607 notably engages with the catalytic aspartate and causes a destabilization of insert-2 at the autophosphorylation dimer interface. While PRT062607 is not selective for PINK1, it provides a scaffold for the development of more selective and potent inhibitors of PINK1 that could be used as chemical probes.


Assuntos
Cicloexilaminas , Proteínas Quinases , Pirimidinas , Ubiquitina-Proteína Ligases , Humanos , Proteínas Quinases/metabolismo , Células HeLa , Ubiquitina-Proteína Ligases/metabolismo , Fosforilação , Ubiquitina/metabolismo , Trifosfato de Adenosina/metabolismo
3.
Biomed Res Int ; 2024: 6160554, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38567164

RESUMO

Hypertrophic cardiomyopathy (HCM) is characterised by asymmetric left ventricular hypertrophy, ventricular arrhythmias, and cardiomyocyte dysfunction that may cause sudden death. HCM is associated with mutations in sarcomeric proteins and is usually transmitted as an autosomal-dominant trait. The aim of this in silico study was to assess the mechanisms that underlie the altered electrophysiological activity, contractility, regulation of energy metabolism, and crossbridge cycling in HCM at the single-cell level. To investigate this, we developed a human ventricular cardiomyocyte model that incorporates electrophysiology, metabolism, and force generation. The model was validated by its ability to reproduce the experimentally observed kinetic properties of human HCM induced by (a) remodelling of several ion channels and Ca2+-handling proteins arising from altered Ca2+/calmodulin kinase II signalling pathways and (b) increased Ca2+ sensitivity of the myofilament proteins. Our simulation showed a decreased phosphocreatine-to-ATP ratio (-9%) suggesting a negative mismatch between energy expenditure and supply. Using a spatial myofilament half-sarcomere model, we also compared the fraction of detached, weakly bound, and strongly bound crossbridges in the control and HCM conditions. Our simulations showed that HCM has more crossbridges in force-producing states than in the control condition. In conclusion, our model reveals that impaired crossbridge kinetics is accompanied by a negative mismatch between the ATP supply and demand ratio. This suggests that improving this ratio may reduce the incidence of sudden death in HCM.


Assuntos
Cardiomiopatia Hipertrófica , Miócitos Cardíacos , Humanos , Miócitos Cardíacos/metabolismo , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/metabolismo , Mutação , Sinalização do Cálcio , Trifosfato de Adenosina/metabolismo , Morte Súbita
4.
Physiol Rep ; 12(7): e15956, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38561249

RESUMO

Mutations in PKD1 and PKD2 cause autosomal dominant polycystic kidney disease (ADPKD), which is characterized by the formation of fluid-filled cysts in the kidney. In a subset of ADPKD patients, reduced blood calcium (Ca2+) and magnesium (Mg2+) concentrations are observed. As cystic fluid contains increased ATP concentrations and purinergic signaling reduces electrolyte reabsorption, we hypothesized that inhibiting ATP release could normalize blood Ca2+ and Mg2+ levels in ADPKD. Inducible kidney-specific Pkd1 knockout mice (iKsp-Pkd1-/-) exhibit hypocalcemia and hypomagnesemia in a precystic stage and show increased expression of the ATP-release channel pannexin-1. Therefore, we administered the pannexin-1 inhibitor brilliant blue-FCF (BB-FCF) every other day from Day 3 to 28 post-induction of Pkd1 gene inactivation. On Day 29, both serum Ca2+ and Mg2+ concentrations were reduced in iKsp-Pkd1-/- mice, while urinary Ca2+ and Mg2+ excretion was similar between the genotypes. However, serum and urinary levels of Ca2+ and Mg2+ were unaltered by BB-FCF treatment, regardless of genotype. BB-FCF did significantly decrease gene expression of the ion channels Trpm6 and Trpv5 in both control and iKsp-Pkd1-/- mice. Finally, no renoprotective effects of BB-FCF treatment were observed in iKsp-Pkd1-/- mice. Thus, administration of BB-FCF failed to normalize serum Ca2+ and Mg2+ levels.


Assuntos
Rim Policístico Autossômico Dominante , Animais , Humanos , Camundongos , Trifosfato de Adenosina/metabolismo , Rim/metabolismo , Camundongos Knockout , Mutação , Rim Policístico Autossômico Dominante/metabolismo , Canais de Cátion TRPP/genética , Canais de Cátion TRPP/metabolismo , Canais de Cátion TRPP/farmacologia , Equilíbrio Hidroeletrolítico
5.
Front Immunol ; 15: 1328306, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38590528

RESUMO

CD39 is the major enzyme controlling the levels of extracellular adenosine triphosphate (ATP) via the stepwise hydrolysis of ATP to adenosine diphosphate (ADP) and adenosine monophosphate (AMP). As extracellular ATP is a strong promoter of inflammation, monoclonal antibodies (mAbs) blocking CD39 are utilized therapeutically in the field of immune-oncology. Though anti-CD39 mAbs are highly specific for their target, they lack deep penetration into the dense tissue of solid tumors, due to their large size. To overcome this limitation, we generated and characterized nanobodies that targeted and blocked human CD39. From cDNA-immunized alpacas we selected 16 clones from seven nanobody families that bind to two distinct epitopes of human CD39. Among these, clone SB24 inhibited the enzymatic activity of CD39. Of note, SB24 blocked ATP degradation by both soluble and cell surface CD39 as a 15kD monomeric nanobody. Dimerization via fusion to an immunoglobulin Fc portion further increased the blocking potency of SB24 on CD39-transfected HEK cells. Finally, we confirmed the CD39 blocking properties of SB24 on human PBMCs. In summary, SB24 provides a new small biological antagonist of human CD39 with potential application in cancer therapy.


Assuntos
Anticorpos de Domínio Único , Humanos , Anticorpos de Domínio Único/farmacologia , Trifosfato de Adenosina/metabolismo , Monofosfato de Adenosina , Difosfato de Adenosina/metabolismo
6.
Stem Cell Res Ther ; 15(1): 102, 2024 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-38589967

RESUMO

BACKGROUND: Premature ovarian insufficiency (POI) is a major cause of infertility. In this study, we aimed to investigate the effects of the combination of bone marrow mesenchymal stem cells (BMSCs) and moxibustion (BMSCs-MOX) on POI and evaluate the underlying mechanisms. METHODS: A POI rat model was established by injecting different doses of cyclophosphamide (Cy). The modeling of POI and the effects of the treatments were assessed by evaluating estrous cycle, serum hormone levels, ovarian weight, ovarian index, and ovarian histopathological analysis. The effects of moxibustion on BMSCs migration were evaluated by tracking DiR-labeled BMSCs and analyzing the expression of chemokines stromal cell-derived factor 1 (Sdf1) and chemokine receptor type 4 (Cxcr4). Mitochondrial function and mitophagy were assessed by measuring the levels of reactive oxygen species (ROS), mitochondrial membrane potential (MMP), ATP, and the mitophagy markers (Drp1, Pink1, and Parkin). Furthermore, the mitophagy inhibitor Mdivi-1 and the mitophagy activator CCCP were used to confirm the role of mitophagy in Cy-induced ovarian injury and the underlying mechanism of combination therapy. RESULTS: A suitable rat model of POI was established using Cy injection. Compared to moxibustion or BMSCs transplantation alone, BMSCs-MOX showed improved outcomes, such as reduced estrous cycle disorders, improved ovarian weight and index, normalized serum hormone levels, increased ovarian reserve, and reduced follicle atresia. Moxibustion enhanced Sdf1 and Cxcr4 expression, promoting BMSCs migration. BMSCs-MOX reduced ROS levels; upregulated MMP and ATP levels in ovarian granulosa cells (GCs); and downregulated Drp1, Pink1, and Parkin expression in ovarian tissues. Mdivi-1 significantly mitigated mitochondrial dysfunction in ovarian GCs and improved ovarian function. CCCP inhibited the ability of BMSCs-MOX treatment to regulate mitophagy and ameliorate Cy-induced ovarian injury. CONCLUSIONS: Moxibustion enhanced the migration and homing of BMSCs following transplantation and improves their ability to repair ovarian damage. The combination of BMSCs and moxibustion effectively reduced the excessive activation of mitophagy, which helped prevent mitochondrial damage, ultimately improving ovarian function. These findings provide a novel approach for the treatment of pathological ovarian aging and offer new insights into enhancing the efficacy of stem cell therapy for POI patients.


Assuntos
Transplante de Células-Tronco Mesenquimais , Células-Tronco Mesenquimais , Moxibustão , Insuficiência Ovariana Primária , Humanos , Feminino , Ratos , Animais , Mitofagia , Espécies Reativas de Oxigênio/metabolismo , Carbonil Cianeto m-Clorofenil Hidrazona/efeitos adversos , Carbonil Cianeto m-Clorofenil Hidrazona/metabolismo , Insuficiência Ovariana Primária/induzido quimicamente , Insuficiência Ovariana Primária/terapia , Insuficiência Ovariana Primária/patologia , Ciclofosfamida/efeitos adversos , Células-Tronco Mesenquimais/metabolismo , Mitocôndrias/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Proteínas Quinases/metabolismo , Hormônios/efeitos adversos , Hormônios/metabolismo , Trifosfato de Adenosina/metabolismo
7.
Wiad Lek ; 77(2): 262-267, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38592987

RESUMO

OBJECTIVE: Aim: The current study was designed to investigate the role of ABCG5 and ABCG5 in serum with normal and expected cardiac complaints with CVDs as individual early diagnostic tools. PATIENTS AND METHODS: Materials and Methods: Data was collected in paper form and recorded from 100 healthy personals and 100 personals suspected with CVS after take the case history and clinical signs in private clinical hospital and the serum was collected for measurements the activity of ABCG5 and ABCG5 by used ELISA reader and the results illustrated that activity of ABCG5 and ABCG5 in all aged groups. RESULTS: Results: Activity of ABCG5 and ABCG5 in all aged groups periods in patient person male and female significant decrease as compared with same age in same period of live, so that the researched depicted that can used the serum activity of ABCG5 and ABCG5 as a diagnostics tools for atherosclerotic cardiovascular disease. CONCLUSION: Conclusions: We identified areas of further exploration on cholesterol transport related with CVD risk and concluded that changes in the Adenosine Triphosphate Binding Cassette transporters mainly G5 and G8 early diagnostic tools for cardiovascular disease in Human. We correlated areas of farther disquisition on nutrient cholesterol and CVD threat, in the included trials, healthy grown-ups consumed high doses of dietary cholesterol.


Assuntos
Doenças Cardiovasculares , Lipoproteínas , Humanos , Masculino , Feminino , Idoso , Lipoproteínas/metabolismo , Membro 5 da Subfamília G de Transportadores de Cassetes de Ligação de ATP , Membro 8 da Subfamília G de Transportadores de Cassetes de Ligação de ATP , Doenças Cardiovasculares/diagnóstico , Trifosfato de Adenosina/metabolismo , Transportadores de Cassetes de Ligação de ATP/metabolismo , Colesterol/metabolismo
8.
J Phys Chem Lett ; 15(14): 3893-3899, 2024 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-38563569

RESUMO

Kinesin is a typical motor protein that can use the chemical energy of ATP hydrolysis to step processively on microtubules, alternating between one-head-bound and two-head-bound states. Some published experimental results showed that the duration of the one-head-bound state increases greatly with a decrease in ATP concentration, whereas the duration of the two-head-bound state is independent of ATP concentration, indicating that ATP binding occurs in the one-head-bound state. On the contrary, other experimental results showed that the duration of the two-head-bound state increases greatly with a decrease in ATP concentration, whereas the duration of the one-head-bound state increases slightly with a decrease in ATP concentration, indicating that ATP binding occurs mainly in the two-head-bound state. Here, we explain consistently and quantitatively these contradictory experimental results, resolving the controversy that is critical to the chemomechanical coupling mechanism of the kinesin motor.


Assuntos
Trifosfato de Adenosina , Cinesinas , Cinesinas/metabolismo , Trifosfato de Adenosina/metabolismo , Microtúbulos/metabolismo , Cinética
9.
ACS Synth Biol ; 13(4): 1355-1364, 2024 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-38569139

RESUMO

Adenosine triphosphate (ATP)-producing modules energized by light-driven proton pumps are powerful tools for the bottom-up assembly of artificial cell-like systems. However, the maximum efficiency of such modules is prohibited by the random orientation of the proton pumps during the reconstitution process into lipid-surrounded nanocontainers. Here, we overcome this limitation using a versatile approach to uniformly orient the light-driven proton pump proteorhodopsin (pR) in liposomes. pR is post-translationally either covalently or noncovalently coupled to a membrane-impermeable protein domain guiding orientation during insertion into preformed liposomes. In the second scenario, we developed a novel bifunctional linker, trisNTA-SpyTag, that allows for the reversible connection of any SpyCatcher-containing protein and a HisTag-carrying protein. The desired protein orientations are verified by monitoring vectorial proton pumping and membrane potential generation. In conjunction with ATP synthase, highly efficient ATP production is energized by the inwardly pumping population. In comparison to other light-driven ATP-producing modules, the uniform orientation allows for maximal rates at economical protein concentrations. The presented technology is highly customizable and not limited to light-driven proton pumps but applicable to many membrane proteins and offers a general approach to overcome orientation mismatch during membrane reconstitution, requiring little to no genetic modification of the protein of interest.


Assuntos
Trifosfato de Adenosina , Lipossomos , Lipossomos/metabolismo , Trifosfato de Adenosina/metabolismo , Luz , Bombas de Próton/metabolismo , Proteínas de Membrana/metabolismo
10.
Biophys Chem ; 309: 107232, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38593533

RESUMO

ATP-hydrolysis-associated conformational change of the ß-subunit during the rotation of F1-ATPase (F1) has been discussed using cryo-electron microscopy (cryo-EM). Since it is worthwhile to further investigate the conformation of ATP at the catalytic subunit through an alternative approach, the structure of ATP bound to the F1ß-subunit monomer (ß) was analyzed by solid-state NMR. The adenosine conformation of ATP-ß was similar to that of ATP analog in F1 crystal structures. 31P chemical shift analysis showed that the Pα and Pß conformations of ATP-ß are gauche-trans and trans-trans, respectively. The triphosphate chain is more extended in ATP-ß than in ATP analog in F1 crystals. This appears to be in the state just before ATP hydrolysis. Furthermore, the ATP-ß conformation is known to be more closed than the closed form in F1 crystal structures. In view of the cryo-EM results, ATP-ß would be a model of the most closed ß-subunit with ATP ready for hydrolysis in the hydrolysis stroke of the F1 rotation.


Assuntos
Trifosfato de Adenosina , ATPases Translocadoras de Prótons , ATPases Translocadoras de Prótons/química , ATPases Translocadoras de Prótons/metabolismo , Hidrólise , Trifosfato de Adenosina/metabolismo , Microscopia Crioeletrônica , Domínio Catalítico , Conformação Proteica
11.
Proc Natl Acad Sci U S A ; 121(16): e2401313121, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38602916

RESUMO

All forms of life are presumed to synthesize arginine from citrulline via a two-step pathway consisting of argininosuccinate synthetase and argininosuccinate lyase using citrulline, adenosine 5'-triphosphate (ATP), and aspartate as substrates. Conversion of arginine to citrulline predominantly proceeds via hydrolysis. Here, from the hyperthermophilic archaeon Thermococcus kodakarensis, we identified an enzyme which we designate "arginine synthetase". In arginine synthesis, the enzyme converts citrulline, ATP, and free ammonia to arginine, adenosine 5'-diphosphate (ADP), and phosphate. In the reverse direction, arginine synthetase conserves the energy of arginine deimination and generates ATP from ADP and phosphate while releasing ammonia. The equilibrium constant of this reaction at pH 7.0 is [Cit][ATP][NH3]/[Arg][ADP][Pi] = 10.1 ± 0.7 at 80 °C, corresponding to a ΔG°' of -6.8 ± 0.2 kJ mol-1. Growth of the gene disruption strain was compared to the host strain in medium composed of amino acids. The results suggested that arginine synthetase is necessary in providing ornithine, the precursor for proline biosynthesis, as well as in generating ATP. Growth in medium supplemented with citrulline indicated that arginine synthetase can function in the direction of arginine synthesis. The enzyme is widespread in nature, including bacteria and eukaryotes, and catalyzes a long-overlooked energy-conserving reaction in microbial amino acid metabolism. Along with ornithine transcarbamoylase and carbamate kinase, the pathway identified here is designated the arginine synthetase pathway.


Assuntos
Arginina , Ligases , Arginina/metabolismo , Citrulina/metabolismo , Amônia , Ornitina/genética , Trifosfato de Adenosina/metabolismo , Fosfatos , Adenosina , Catálise
12.
PLoS One ; 19(4): e0302444, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38635580

RESUMO

Our objective was to understand how maternal age influences the mitochondrial population and ATP content of in vivo matured bovine oocytes. We hypothesized that in vivo matured oocytes from older cows would have altered mitochondrial number and distribution patterns and lower cytoplasmic ATP content compared to the oocytes obtained from younger cows. Follicles ≥5mm were ablated in old cows (13 to 22 yrs, Old Group, n = 7) and their younger daughters (4 to 10 years old, Young Group; n = 7) to induce the emergence of a new follicular wave. Cows were treated twice daily with eight doses of FSH starting 24 hr after ablation (Day 0, day of wave emergence). Prostaglandin F2alpha (PGF) was given on Days 3 and 3.5, LH on Day 4.5, and cumulus-oocyte-complexes were collected 18-20 hours post-LH by ultrasound-guided follicular aspiration. Oocytes were either processed for staining with MitoTracker Deep Red FM or for ATP assay. Stained oocytes were imaged with a Zeiss LSM 710 confocal microscope, and mitochondria were segmented in the oocyte volume sets using Imaris Pro 7.4. In vivo matured oocytes obtained from old cows were similar in morphological grades to those from young cows. However, the oocytes of COC from older cows had 23% less intracellular ATP (27.4±1.9 vs 35.7±2.2 pmol per oocyte, P = 0.01) than those of young cows. Furthermore, the average volume of individual mitochondria, indicated by the number of image voxels, was greater (P<0.05) in oocytes from older cows than in those from younger cows. Oocytes from older cows also tended to have a greater number of mitochondrial clusters (P = 0.06) and an increased number of clusters in the central region of the oocytes (P = 0.04) compared to those from younger cows. In conclusion, our study demonstrated that maternal age was associated with a decrease in the cytoplasmic ATP content of in vivo mature oocytes and an altered distribution of mitochondrial structures. These findings suggest that maternal age may negatively influence the developmental competence of oocytes from older cows.


Assuntos
Fertilização In Vitro , Técnicas de Maturação in Vitro de Oócitos , Feminino , Bovinos , Animais , Idade Materna , Fertilização In Vitro/veterinária , Oócitos/metabolismo , Mitocôndrias , Trifosfato de Adenosina/metabolismo
13.
Clin Sci (Lond) ; 138(8): 491-514, 2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38639724

RESUMO

The non-stop provision of chemical energy is of critical importance to normal cardiac function, requiring the rapid turnover of ATP to power both relaxation and contraction. Central to this is the creatine kinase (CK) phosphagen system, which buffers local ATP levels to optimise the energy available from ATP hydrolysis, to stimulate energy production via the mitochondria and to smooth out mismatches between energy supply and demand. In this review, we discuss the changes that occur in high-energy phosphate metabolism (i.e., in ATP and phosphocreatine) during ischaemia and reperfusion, which represents an acute crisis of energy provision. Evidence is presented from preclinical models that augmentation of the CK system can reduce ischaemia-reperfusion injury and improve functional recovery. Energetic impairment is also a hallmark of chronic heart failure, in particular, down-regulation of the CK system and loss of adenine nucleotides, which may contribute to pathophysiology by limiting ATP supply. Herein, we discuss the evidence for this hypothesis based on preclinical studies and in patients using magnetic resonance spectroscopy. We conclude that the correlative evidence linking impaired energetics to cardiac dysfunction is compelling; however, causal evidence from loss-of-function models remains equivocal. Nevertheless, proof-of-principle studies suggest that augmentation of CK activity is a therapeutic target to improve cardiac function and remodelling in the failing heart. Further work is necessary to translate these findings to the clinic, in particular, a better understanding of the mechanisms by which the CK system is regulated in disease.


Assuntos
Insuficiência Cardíaca , Traumatismo por Reperfusão , Humanos , Creatina Quinase/metabolismo , Trifosfato de Adenosina/metabolismo , Coração , Metabolismo Energético/fisiologia , Traumatismo por Reperfusão/metabolismo , Fosfocreatina/metabolismo , Doença Crônica , Miocárdio/patologia
14.
Elife ; 122024 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-38573813

RESUMO

Metabolic pathways are plastic and rapidly change in response to stress or perturbation. Current metabolic profiling techniques require lysis of many cells, complicating the tracking of metabolic changes over time after stress in rare cells such as hematopoietic stem cells (HSCs). Here, we aimed to identify the key metabolic enzymes that define differences in glycolytic metabolism between steady-state and stress conditions in murine HSCs and elucidate their regulatory mechanisms. Through quantitative 13C metabolic flux analysis of glucose metabolism using high-sensitivity glucose tracing and mathematical modeling, we found that HSCs activate the glycolytic rate-limiting enzyme phosphofructokinase (PFK) during proliferation and oxidative phosphorylation (OXPHOS) inhibition. Real-time measurement of ATP levels in single HSCs demonstrated that proliferative stress or OXPHOS inhibition led to accelerated glycolysis via increased activity of PFKFB3, the enzyme regulating an allosteric PFK activator, within seconds to meet ATP requirements. Furthermore, varying stresses differentially activated PFKFB3 via PRMT1-dependent methylation during proliferative stress and via AMPK-dependent phosphorylation during OXPHOS inhibition. Overexpression of Pfkfb3 induced HSC proliferation and promoted differentiated cell production, whereas inhibition or loss of Pfkfb3 suppressed them. This study reveals the flexible and multilayered regulation of HSC glycolytic metabolism to sustain hematopoiesis under stress and provides techniques to better understand the physiological metabolism of rare hematopoietic cells.


Assuntos
Glicólise , Fosfofrutoquinase-2 , Animais , Camundongos , Trifosfato de Adenosina/metabolismo , Anaerobiose , Hematopoese , Células-Tronco Hematopoéticas/metabolismo , Fosforilação Oxidativa , Fosfofrutoquinase-2/genética , Fosfofrutoquinase-2/metabolismo , Monoéster Fosfórico Hidrolases/metabolismo
15.
PLoS One ; 19(4): e0301495, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38630767

RESUMO

The purpose of this study was to examine transient plasma membrane disruptions (TPMDs) and TPMD-induced Ca++ waves (TPMD Ca++ Wvs) in human and mouse corneal epithelium (HCEC and MCEC). A multi-photon microscope was used to create laser-induced TPMDs in single cultured cells and in intact ex vivo and in vivo MCECs and ex vivo human cornea rim HCECs. Eye rubbing-induced TPMDs were studied by gentle rubbing with a cotton tipped applicator over a closed eyelid in ex vivo and in vivo MCECs. Ca++ sources for TPMD-induced Ca++ waves were explored using Ca++ channel inhibitors and Ca++-free media. TPMDs and TPMD Ca++ Wvs were observed in all cornea epithelial models examined, often times showing oscillating Ca++ levels. The sarcoplasmic reticulum Ca++ ATPase inhibitors thapsigargin and CPA reduced TPMD Ca++ Wvs. TRP V1 antagonists reduced TPMD Ca++ Wvs in MCECs but not HCECs. Ca++-free medium, 18α-GA (gap junction inhibitor), apyrase (hydrolyzes ATP), and AMTB (TRPM8 inhibitor) did not affect TPMD Ca++ Wvs. These results provide a direct demonstration of corneal epithelial cell TPMDs and TPMDs in in vivo cells from a live animal. TPMDs were observed following gentle eye rubbing, a routine corneal epithelial cell mechanical stress, indicating TPMDs and TPMD Ca++ Wvs are common features in corneal epithelial cells that likely play a role in corneal homeostasis and possibly pathophysiological conditions. Intracellular Ca++ stores are the primary Ca++ source for corneal epithelial cell TPMD Ca++ Wvs, with TRPV1 Ca++ channels providing Ca++ in MCECs but not HCECs. Corneal epithelial cell TPMD Ca++ Wv propagation is not influenced by gap junctions or ATP.


Assuntos
Cálcio , Epitélio Corneano , Humanos , Camundongos , Animais , Cálcio/metabolismo , Sinalização do Cálcio , Membrana Celular/metabolismo , Cálcio da Dieta/metabolismo , Epitélio Corneano/metabolismo , Células Cultivadas , Células Epiteliais/metabolismo , Trifosfato de Adenosina/metabolismo
16.
Anal Chim Acta ; 1304: 342572, 2024 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-38637042

RESUMO

BACKGROUND: Adenosine 5'-triphosphate (ATP) plays an important role in cell metabolism and has been regarded as an indicator of cell survival and damage. Golgi apparatus participates in the signal transduction processes of substance transport, ion homeostasis and stress when extracellular substances enter cells. Till now, there is no fluorescent probe for monitoring Golgi ATP level fluctuation and visualizing the configuration change of the Golgi apparatus during the inhibition of glycolysis. RESULTS: Herein, we report the synthesis of a novel water-soluble cationic polythiophene derivative (PEMTEA) that can be employed as a fluorescent sensor for measuring ATP in the Golgi apparatus. PEMTEA self-assembles into PT-NP nanoparticles in aqueous solution with a diameter of approximately 2 nm. PT-NP displays high sensitivity and superb selectivity towards ATP with a detection limit of 90 nM and a linear detection range from 0 to 3.0 µM. The nanoparticles show low toxicity to HepG2 cells and good photostability in the Golgi apparatus. With the stimulation of Ca2+, PT-NP was practically applied to real-time monitor of endogenous ATP levels in the Golgi apparatus through fluorescence microscopy. Finally, we studied the relationship between the concentration of ATP and configuration of the Golgi apparatus during the inhibition of glycolysis using PT-NP. SIGNIFICANCE: We have demonstrated that PT-NP can not only indicate the fluctuation and distribution of ATP in the Golgi apparatus, but also give the information of the configuration change of the Golgi apparatus at the single-cell level during the inhibition of glycolysis.


Assuntos
Corantes Fluorescentes , Nanopartículas , Corantes Fluorescentes/metabolismo , Água/metabolismo , Complexo de Golgi/metabolismo , Trifosfato de Adenosina/metabolismo , Polímeros , Glicólise
17.
Int J Nanomedicine ; 19: 2755-2772, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38525008

RESUMO

Purpose: The drug resistance and low response rates of immunotherapy limit its application. This study aimed to construct a new nanoparticle (CaCO3-polydopamine-polyethylenimine, CPP) to effectively deliver interleukin-12 (IL-12) and suppress cancer progress through immunotherapy. Methods: The size distribution of CPP and its zeta potential were measured using a Malvern Zetasizer Nano-ZS90. The morphology and electrophoresis tentative delay of CPP were analyzed using a JEM-1400 transmission electron microscope and an ultraviolet spectrophotometer, respectively. Cell proliferation was analyzed by MTT assay. Proteins were analyzed by Western blot. IL-12 and HMGB1 levels were estimated by ELISA kits. Live/dead staining assay was performed using a Calcein-AM/PI kit. ATP production was detected using an ATP assay kit. The xenografts in vivo were estimated in C57BL/6 mice. The levels of CD80+/CD86+, CD3+/CD4+ and CD3+/CD8+ were analyzed by flow cytometry. Results: CPP could effectively express EGFP or IL-12 and increase ROS levels. Laser treatment promoted CPP-IL-12 induced the number of dead or apoptotic cell. CPP-IL-12 and laser could further enhance CALR levels and extracellular HMGB1 levels and decrease intracellular HMGB1 and ATP levels, indicating that it may induce immunogenic cell death (ICD). The tumors and weights of xenografts in CPP-IL-12 or laser-treated mice were significantly reduced than in controls. The IL-12 expression, the CD80+/CD86+ expression of DC from lymph glands, and the number of CD3+/CD8+T or CD3+/CD4+T cells from the spleen increased in CPP-IL-12-treated or laser-treated xenografts compared with controls. The levels of granzyme B, IFN-γ, and TNF-α in the serum of CPP-IL-12-treated mice increased. Interestingly, CPP-IL-12 treatment in local xenografts in the back of mice could effectively inhibit the growth of the distant untreated tumor. Conclusion: The novel CPP-IL-12 could overexpress IL-12 in melanoma cells and achieve immunotherapy to melanoma through inducing ICD, activating CD4+ T cell, and enhancing the function of tumor-reactive CD8+ T cells.


Assuntos
Proteína HMGB1 , Melanoma , Humanos , Camundongos , Animais , Interleucina-12 , Linfócitos T CD8-Positivos , Melanoma/terapia , Melanoma/metabolismo , Proteína HMGB1/metabolismo , Morte Celular Imunogênica , Camundongos Endogâmicos C57BL , Proliferação de Células , Linfócitos T CD4-Positivos , Trifosfato de Adenosina/metabolismo
18.
Molecules ; 29(5)2024 Feb 29.
Artigo em Inglês | MEDLINE | ID: mdl-38474588

RESUMO

Alcoholic liver disease (ALD) is the main factor that induces liver-related death worldwide and represents a common chronic hepatopathy resulting from binge or chronic alcohol consumption. This work focused on revealing the role and molecular mechanism of nodakenin (NK) in ALD associated with hepatic inflammation and lipid metabolism through the regulation of Nur77-P2X7r signaling. In this study, an ALD model was constructed through chronic feeding of Lieber-DeCarli control solution with or without NK treatment. Ethanol (EtOH) or NK was administered to AML-12 cells, after which Nur77 was silenced. HepG2 cells were exposed to ethanol (EtOH) and subsequently treated with recombinant Nur77 (rNur77). Mouse peritoneal macrophages (MPMs) were treated with lipopolysaccharide/adenosine triphosphate (LPS/ATP) and NK, resulting in the generation of conditioned media. In vivo, histopathological alterations were markedly alleviated by NK, accompanied by reductions in serum triglyceride (TG), aspartate aminotransferase (AST), and alanine aminotransferase (ALT) levels and the modulation of Lipin-1, SREBP1, and Nur77 levels in comparison to the EtOH-exposed group (p < 0.001). Additionally, NK reduced the production of P2X7r and NLRP3. NK markedly upregulated Nur77, inhibited P2X7r and Lipin-1, and promoted the function of Cytosporone B, a Nur77 agonist (p < 0.001). Moreover, Nur77 deficiency weakened the regulatory effect of NK on P2X7r and Lipin-1 inhibition (p < 0.001). In NK-exposed MPMs, cleaved caspase-1 and mature IL-1ß expression decreased following LPS/ATP treatment (p < 0.001). NK also decreased inflammatory-factor production in primary hepatocytes stimulated with MPM supernatant. NK ameliorated ETOH-induced ALD through a reduction in inflammation and lipogenesis factors, which was likely related to Nur77 activation. Hence, NK is a potential therapeutic approach to ALD.


Assuntos
Cumarínicos , Glucosídeos , Lipopolissacarídeos , Hepatopatias Alcoólicas , Animais , Camundongos , Lipopolissacarídeos/farmacologia , Hepatopatias Alcoólicas/metabolismo , Fígado , Etanol/metabolismo , Inflamação/metabolismo , Transdução de Sinais/fisiologia , Trifosfato de Adenosina/metabolismo , Camundongos Endogâmicos C57BL , Compostos Orgânicos
19.
PLoS Biol ; 22(3): e3002528, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38427710

RESUMO

Streptomyces antibiotic regulatory proteins (SARPs) are widely distributed activators of antibiotic biosynthesis. Streptomyces coelicolor AfsR is an SARP regulator with an additional nucleotide-binding oligomerization domain (NOD) and a tetratricopeptide repeat (TPR) domain. Here, we present cryo-electron microscopy (cryo-EM) structures and in vitro assays to demonstrate how the SARP domain activates transcription and how it is modulated by NOD and TPR domains. The structures of transcription initiation complexes (TICs) show that the SARP domain forms a side-by-side dimer to simultaneously engage the afs box overlapping the -35 element and the σHrdB region 4 (R4), resembling a sigma adaptation mechanism. The SARP extensively interacts with the subunits of the RNA polymerase (RNAP) core enzyme including the ß-flap tip helix (FTH), the ß' zinc-binding domain (ZBD), and the highly flexible C-terminal domain of the α subunit (αCTD). Transcription assays of full-length AfsR and truncated proteins reveal the inhibitory effect of NOD and TPR on SARP transcription activation, which can be eliminated by ATP binding. In vitro phosphorylation hardly affects transcription activation of AfsR, but counteracts the disinhibition of ATP binding. Overall, our results present a detailed molecular view of how AfsR serves to activate transcription.


Assuntos
Proteínas de Ligação a DNA , Streptomyces , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Streptomyces/genética , Streptomyces/metabolismo , Microscopia Crioeletrônica , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Ativação Transcricional , Antibacterianos , Trifosfato de Adenosina/metabolismo , Proteínas de Bactérias/metabolismo , Regulação Bacteriana da Expressão Gênica
20.
Cell Mol Biol (Noisy-le-grand) ; 70(2): 183-188, 2024 Feb 29.
Artigo em Inglês | MEDLINE | ID: mdl-38430023

RESUMO

This study aimed to elucidate the effect of mitochondria-targeted reactive oxygen species (ROS) blockor SS-31 on hepatic stellate cells (HSC) activation during liver fibrosis. TGF-ß1 was employed to induce HSC activation, while MitoSOX Red was utilized to assess the presence of mitochondrial ROS. The mitochondrial membrane potential (MMP) was measured using the JC-1 probe, and the ATP level was determined using a specific kit. The proliferation of HSCs was assessed using CCK-8 and colony formation assays, whereas flow cytometry was employed to detect HSC apoptosis. Fibrotic markers (COL1A1 and α-SMA) and NLRP3 inflammasome components (NLRP3, caspase-1, and ASC) were analyzed via Western blotting. Liver fibrosis was induced in mice using CCl4, and subsequently, histopathological changes were observed through HE staining and Masson staining. In TGF-ß1-activated HSCs, mitochondrial ROS expression increased, MMP and ATP content decreased, indicating mitochondrial damage. After TGF-ß1 induction, HSC proliferation increased, apoptosis decreased, and COL1A1, α-SMA, and NLRP3 inflammasome protein expression increased. After SS-31 treatment, mitochondrial ROS expression decreased, MMP recovered, ATP level increased, HSC proliferation decreased, apoptosis increased, and the expressions of COL1A1, α-SMA, and NLRP3 inflammasome decreased. NLRP3 blockor MCC950 treatment blocked HSC activation. CCL4-induced liver fibrosis mice had inflammatory cell infiltration and significant collagen fiber deposition in the liver. After SS-31 treatment, liver inflammation and collagen deposition were significantly reduced. SS-31, as a mitochondria-targeted ROS blockor, can block HSC activation by regulating the NLRP3 inflammasome, thereby alleviating liver fibrosis.


Assuntos
Células Estreladas do Fígado , Inflamassomos , Proteína 3 que Contém Domínio de Pirina da Família NLR , Animais , Camundongos , Trifosfato de Adenosina/metabolismo , Colágeno/metabolismo , Células Estreladas do Fígado/efeitos dos fármacos , Células Estreladas do Fígado/metabolismo , Inflamassomos/efeitos dos fármacos , Inflamassomos/metabolismo , Cirrose Hepática/tratamento farmacológico , Cirrose Hepática/metabolismo , Mitocôndrias/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/efeitos dos fármacos , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Fator de Crescimento Transformador beta1/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...